Numerické metody I (FSI-SN1)

Akademický rok 2012/2013
Garant: doc. RNDr. Libor Čermák, CSc.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu Numerické metody I je seznámit studenty se základními numerickými metodami. V tomto kurzu se rovněž klade značný důraz na počítačovou realizaci jednotlivých metod. Studenti by měli pochopit podstatu metod a znát jejich přednosti a nedostatky. Pozornost je rovněž věnována otázkám stability a podmíněnosti jednotlivých numerických úloh. Důležitou součástí předmětu je samostatná práce na zadaných projektech.
Výstupy studia a kompetence:
Předmět Numerické metody I seznámí studenty se základní kolekcí úloh numerické matematiky. Studenti získají znalosti o přímých a iteračních metodách řešení soustav lineárních rovnic, o interpolaci, o metodě nejmenších čtverců, o numerickém derivování a integrování a o řešení nelineárních rovnic. Získané znalosti si studenti ověří a prohloubí zpracováním několika projektů.
Prerekvizity:
Diferenciální a integrální počet funkcí jedné a více proměnných. Základy lineární algebry. Programování v MATLABu.
Obsah předmětu (anotace):
Kurz Numerické metody I představuje první systematický výklad některých základních metod numerické matematiky jako samostatné vědní disciplíny. Získané znalosti jsou předpokladem pro úspěšné zvládnutí speciálních partií numerické matematiky, které přímo souvisejí s numerickým řešením inženýrských problémů. Hlavní témata: Přímé a iterační metody řešení soustav lineárních rovnic. Interpolace. Metoda nejmenších čtverců. Numerické derivování a integrování. Řešení nelineárních rovnic. Zvládnutí probírané látky si studenti prokáží tak, že samostatně zpracují nejméně dva projekty.
Metody vyučování:
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.
Způsob a kritéria hodnocení:
PODMÍNKY PRO UDĚLENÍ ZÁPOČTU: Účast ve cvičeních, zpracování semestrálních prací, ve kterých studenti zúročí poznatky získané na přednáškách. Student, který dostane zápočet, získá také bodové ohodnocení v rozsahu 0 až 30 bodů, které se mu započítá do výsledné klasifikace předmětu. ZKOUŠKA je ústní. Za zkoušku student obdrží 0 až 70 bodů. CELKOVÉ HODNOCENÍ: Výsledné bodové hodnocení je součtem bodů získaných od cvičícího (0--30) a od zkoušejícího (0--70). KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující). HODNOCENÍ je plně v kompetenci zkoušejícího. Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod.
    Cvičení s poč. podporou  13 × 2 hod.
Osnova:
    Přednáška 1. Úvod do problematiky numerických metod: chyby v numerických výpočtech, reprezentace čísel v počítači, podmíněnost úloh, stabilita algoritmů.
2. Gaussova eliminační metoda. LU rozklad. Výběr hlavních prvků.
3. Řešení soustav se speciálními maticemi. Stabilita a podmíněnost. Analýza chyb.
4. Klasické iterační metody: Jacobiova, Gaussova-Seidelova, SOR, SSOR.
5. Zobecněná metoda minimálních reziduí, metoda sdružených gradientů.
6. Lagrangeův, Newtonův a Hermitův interpolační polynom. Interpolace po částech lineární, po částech kubická Hermitova.
7. Kubický interpolační splajn. Metoda nejmenších čtverců: prokládání dat křivkami, řešení přeurčených soustav.
8. QR transformace a singulární rozklad v metodě nejmenších čtverců.
9. Metody ortogonalizace (Householderova, Givensova a Gramova-Schmidtova metoda).
10. Numerické derivování: základní formule, Richardsonova extrapolace.
11. Numerické integrování: Newtonovy-Cotesovy formule, Rombergova integrace, Gaussovy formule, adaptivní integrace.
12. Řešení jedné nelineární rovnice: metoda bisekce, Newtonova metoda, metoda sečen, metoda regula falsi, metoda inverzní kvadratické interpolace, metoda prosté iterace.
13. Řešení soustav nelineárních rovnic: Newtonova metoda, metoda prosté iterace.
    Cvičení s poč. podporou Ke každému z témat přednášky studenti sestavují programy v MATLABu a ověřují, jak metody fungují. Kromě toho studenti samostatně zpracovávají zadané projekty.
Literatura - základní:
1. M.T. Heath: Scientific Computing. An Introductory Survey. Second edition. McGraw-Hill, New York, 2002.
2. C.B. Moler: Numerical Computing with Matlab, Siam, Philadelphia, 2004.
3. G. Dahlquist, A. Bjork: Numerical Methods, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1974.
4. J.H. Mathews, K.D. Fink: Numerical Methods Using MATLAB, Pearson Prentice Hall, New Jersey, 2004.
5. A. Quarteroni, R. Sacco, F. Saleri: Numerical Mathematics, Springer, Berlin, 2000
Literatura - doporučená:
1. L. Čermák, R. Hlavička: Numerické metody, CERM, Brno, 2008.
2. L. Čermák: Vybrané statě z numerických metod. [on-line], available from: http://mathonline.fme.vutbr.cz/Numericke-metody-I/sc-1150-sr-1-a-141/default.aspx.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
B3A-P prezenční studium B-MAI Matematické inženýrství -- zá,zk 5 Povinný 1 3 Z