Numerické metody II (FSI-SN2)

Akademický rok 2012/2013
Garant: doc. RNDr. Libor Čermák, CSc.  
Garantující pracoviště: ÚM všechny předměty garantované tímto pracovištěm
Jazyk výuky: čeština
Cíle předmětu:
Cílem předmětu Numerické metody II je seznámit studenty se základními postupy řešení vybraných numerických problémů a vybavit je schopností samostatně tyto problémy řešit pomocí počítače. Studenti by měli pochopit, že teprve znalost podstatných vlastností jednotlivých numerických metod jim umožní efektivní volbu vhodné metody a odpovídajícího softwarového produktu. Důležitou součástí předmětu je samostatná práce na zadaných projektech.
Výstupy studia a kompetence:
Předmět Numerické metody II seznámí studenty s další kolekcí úloh numerické matematiky. Studenti získají znalosti o aproximaci vlastních čísel a vektorů, o řešení počátečních a okrajových úloh pro obyčejné diferenciální rovnice a o řešení eliptické, parabolické a hyperbolické parciální diferenciální rovnice. Získané znalosti si studenti ověří a prohloubí zpracováním několika projektů.
Prerekvizity:
Diferenciální a integrální počet funkcí jedné a více proměnných. Základy lineární algebry. Obyčejné diferenciální rovnice. Numerické metody řešení lineárních a nelineárních rovnic. Interpolace. Programování v MATLABu.
Obsah předmětu (anotace):
Předmět Numerické metody II navazuje na kurz Numerické metody I a má seznámit studenty se základními postupy řešení dalších vybraných numerických problémů, které se často vyskytují při řešení praktických technických úloh. Pochopení podstaty probíraných numerických algoritmů si studenti ověří a prohloubí samostatným řešením úloh u počítače tak, že kvalifikovaně použijí hotový numerický software a některé algoritmy si také sami naprogramují. Probíraná témata: Výpočet vlastních čísel a vektorů. Řešení počátečních úloh pro obyčejné diferenciální rovnice. Řešení okrajových úloh pro obyčejné diferenciální rovnice. Řešení parciálních diferenciálních rovnic eliptického, parabolického a hyperbolického typu. Zvládnutí probírané látky si studenti prokáží tak, že samostatně zpracují nejméně dva projekty.
Metody vyučování:
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.
Způsob a kritéria hodnocení:
PODMÍNKY PRO UDĚLENÍ ZÁPOČTU: Účast ve cvičeních, zpracování semestrálních prací, ve kterých studenti zúročí poznatky získané na přednáškách. Student, který dostane zápočet, získá také bodové ohodnocení v rozsahu 0 až 30 bodů, které se mu započítá do výsledné klasifikace předmětu. ZKOUŠKA je ústní. Za zkoušku student obdrží 0 až 70 bodů. CELKOVÉ HODNOCENÍ: Výsledné bodové hodnocení je součtem bodů získaných od cvičícího (0--30) a od zkoušejícího (0--70). KLASIFIKACE: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující). HODNOCENÍ je plně v kompetenci zkoušejícího. Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.
Typ (způsob) výuky:
    Přednáška  13 × 2 hod. nepovinná                  
    Cvičení s poč. podporou  13 × 2 hod. povinná                  
Osnova:
    Přednáška 1. Problém vlastních čísel: základní poznatky.
2. Problém vlastních čísel: mocninná metoda, QR metoda
3. Problém vlastních čísel: Arnoldiho metoda, Jacobiho metoda, metoda bisekce, výpočet singulárního rozkladu.
4. Počáteční úlohy pro ODR: základní pojmy (diskretizační chyba, stabilita,...).
5. Počáteční úlohy pro ODR: Rungovy-Kuttovy metody, řízení délky kroku.
6. Počáteční úlohy pro ODR: Adamsovy metody, technika prediktor-korektor.
7. Počáteční úlohy pro ODR: metody zpětného derivování, tuhé systémy ODR.
8. Okrajové úlohy pro ODR: diferenční metoda a metoda konečných objemů.
9. Okrajové úlohy pro ODR: metoda konečných prvků.
10. PDR eliptického typu: diferenční metoda, metoda konečných objemů.
11. PDR eliptického typu: úvod do metody konečných prvků.
12. PDR parabolického typu: metoda přímek, stabilita soustavy ODR1, metody časové diskretizace.
13. PDR hyperbolického typu: metoda přímek, stabilita soustavy ODR2, metody časové diskretizace.
    Cvičení s poč. podporou Ke každému z témat přednášky studenti sestavují programy v MATLABu a ověřují, jak metody fungují. Kromě toho studenti samostatně zpracovávají zadané projekty.
Literatura - základní:
1. M.T. Heath: Scientific Computing. An Introductory Survey. Second edition. McGraw-Hill, New York, 2002.
2. L.F. Shampine: Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
3. E. Vitásek: Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia, Praha, 1994.
5. C. F. Van Loan, G. H. Golub: Matrix Computations, 3th ed., the Johns Hopkins University Press, Baltimore, 1996.
Literatura - doporučená:
2. L. Čermák: Vybrané statě z numerických metod. [on-line], available from: http://mathonline.fme.vutbr.cz/Numericke-metody-II/sc-1227-sr-1-a-238/default.aspx.
Zařazení předmětu ve studijních programech:
Program Forma Obor Spec. Typ ukončení   Kredity     Povinnost     St.     Roč.     Semestr  
B3A-P prezenční studium B-MET Mechatronika -- zá,zk 4 Volitelný (nepovinný) 1 2 L
B3A-P prezenční studium B-MAI Matematické inženýrství -- zá,zk 5 Povinný 1 3 L