Mathematics - Selected Topics (FSI-RMA)

Academic year 2017/2018
Supervisor: prof. RNDr. Miloslav Druckmüller, CSc.  
Supervising institute: ÚM all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The aim of the course is to extend students´knowledge acquired in the basic mathematical courses by the topics necessary for study of mechanics and related subjects.
Learning outcomes and competences:
Basic knowledge of functional analysis, metric, vector, unitary spaces, Hilbert space, orthogonal systems of functions, orthogonal transforms, Fourier transform and spectral analysis, application of mentioned subjects in mechanics and physics.
Prerequisites:
Mathematical analysis and linear algebra
Course contents:
The course familiarises studetns with selected topics of mathematics which are necessary for study of mechanics and related subjects. It deals with spaces of functions, orthogonal systems of functions, orthogonal transformations and numerical methods used in mechanics.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
Course-unit credit - based on a written test Exam has a written and (possibly) and oral part.
Controlled participation in lessons:
Missed lessons can be compensated for via a written test.
Type of course unit:
    Lecture  13 × 2 hrs. optionally                  
    Seminars  13 × 2 hrs. compulsory                  
Course curriculum:
    Lecture 1. Mapping, binary relations, equivalence, factor set
2. Metric space
3. Contraction, fix point Banach's theorem
4. Vector space, base, dimension, Vector spaces of functions
5. Unitary space orthogonal a orthonormal spaces
6. Hilbert space, L2 and l2 space
7. Orthogonal bases, Fourier series
8. Orthogonal transforms, Fourier transform, spectral analysis
9. Usage of Fourier transform, convolution theorem, filters
10. 2D Fourier transform and its application
11. Filtration in space and frequency domain, applications in physics and mechanics
12. Operators and functionals
13. Variation methods
    Seminars 1. Revision of selected topics
2. Metric space
3. Contraction, fix point Banach's theorem
4. Vector space, base, dimension, Vector spaces of functions
5. Unitary space orthogonal a orthonormal spaces
6. Hilbert space, L2 and l2 space
7. Orthogonal bases, Fourier series
8. Orthogonal transforms, Fourier transform, spectral analysis
9. Usage of Fourier transform, convolution theorem, filters
10. 2D Fourier transform and its application
11. Filtration in space and frequency domain, applications in physics and mechanics
12. Operators and functionals
13. Variation methods
Literature - fundamental:
1. Kolmogorov,A.N.,Fomin,S.V.: Elements of the Theory of Functions and Functional Analysis, Graylock Press, 1957, 1961, 2002
2. Rektorys, K.: Variační metody, Academia Praha, 1999
3. Bachman,G., Laerence, N.: Functional analysis, Dover Pub., 1966,2000
Literature - recommended:
1. Kolmogorov,A.N.,Fomin,S.V.: Základy teorie funkcí a funkcionální analýzy, SNTL Praha 1975
2. Rektorys, K.: Variační metody, Academia Praha, 1999
3. Veit, J. Integrální transformace: SNTL, Praha 1979
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2A-P full-time study M-IMB Engineering Mechanics and Biomechanics -- ClAc 5 Compulsory 2 1 W
M2A-P full-time study M-MET Mechatronics -- ClAc 5 Compulsory 2 1 W
M2A-P full-time study M-PMO Precise Mechanics and Optics -- ClAc 5 Compulsory 2 1 W