Technical Applications of Artificial Intelligence Methods (FSI-RUI)

Academic year 2017/2018
Supervisor: prof. RNDr. Miloslav Druckmüller, CSc.  
Supervising institute: ÚM all courses guaranted by this institute
Teaching language: Czech
Aims of the course unit:
The aim of the course is to provide students with information about the usage of Multi-valued logic in technical applications.
Learning outcomes and competences:
Knowledge of multi-valued logic, fuzzy sets theory and its use in technical applications, including practical experience with today´s expert systems.
Prerequisites:
Basic knowledge of mathematical logic, set theory and mathematical analysis
Course contents:
The course is intended for students of mathematical engineering and deals with the multi-valued logic theory, theory of linguistic varialble, linguistic models and theory of expert systems based on these topics. Also dealt with are the technical applications of multi-valued logic and expert systems in technical branches.
Teaching methods and criteria:
The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
Course-unit credit is awarded on condition of having worked out a semester work. The exam has a written and oral part.
Controlled participation in lessons:
Atendance at seminars is controlled. An absence can be compensated for via solving additional problems.
Type of course unit:
    Lecture  13 × 2 hrs.
    Seminars in computer labs  13 × 2 hrs.
Course curriculum:
    Lecture 1. Multi-valued logic, formulae
2. T-norms, T-conorms, generalized implications
3. Linguistic variables and linguistic models
4. Knowledge bases of expert systems
5. Semantic interpretations of knowledge bases
6. Inference techniques and its implementation
7. Redundance a contradictions in knowledge bases
8. LMPS system
9. LMPS system - applications
10. Fuzzification and defuzzification problem
11. Technical applications of multi-valued logic and fuzzy sets theory
13. Expert systems
13. Overview of AI methods
    Seminars in computer labs 1. Multi-valued logic, formulae
2. Lukasziewicz logic
3-4. Linguistic variables and linguistic models
5. Semester work specification
6. LMPS system - linguistic variables
7. LMPS system - statements
8. LMPS system - question and reply interpretation
9. LMPS system - debugger and redundance detection
10. LMPS system - contradictions detection and removing
11-12. Semester work consultation
13. Delivery of semester work
Literature - fundamental:
1. Klir, J. Yuan, B.: Fuzzy sets and fuzzy logic, George J. Klir and Bo Yuan, Prentice Hall, NJ 1995
2. Druckmüller, M.: Technické aplikace vícehodnotové logiky, PC- DIR , Brno 1998
Literature - recommended:
1. Druckmüller, M.: Technické aplikace vícehodnotové logiky, PC- DIR , Brno 1998
The study programmes with the given course:
Programme Study form Branch Spec. Final classification   Course-unit credits     Obligation     Level     Year     Semester  
M2A-P full-time study M-MET Mechatronics -- Ac,Ex 5 Compulsory-optional 2 1 S