Course detail

Material Sciences for Mechanical Engineering

FSI-0M0-A Acad. year: 2025/2026 Winter semester

Students will have an overview of physical and chemical processes, which to a large extent influence materials properties. This kind of knowledge is generally considered necessary for further competent work in any branch of mechanical engineering.

Language of instruction

English

Number of ECTS credits

4

Entry knowledge

Students are expected to have general knowledge of mathematics, physics and chemistry acquired at secondary school. They should have the basic knowledge of reaction of materials to general situations.

Rules for evaluation and completion of the course

The basic condition for the award of credit is the active completion of all exercises. Credits will be awarded after a combined written and oral colloquial examination.
Missed lessons in the practical part of the course need to be made up by arrangement with the teacher.

Aims

The aim of the course is to familiarize students with inner structure and physical principle of processes taking place in technological processing of materials. Students shall understand the interactions among chemical composition, processing by means of thermal treatment, structure and properties of materials necessary for manufacturing technology and construction use.
Students will have an overview of physical and chemical operations, which to a large extent influence materials capabilities. The acquired knowledge is necessary for competent work in any mechanical engineering field

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Atomic Structure, Interatomic Bonding, Crystal Structures, Imperfections in Solids
2. Mechanical Properties of Materials I – microstructure and mechanical properties relation, static tests, Charpy Impact Test
3. Mechanical Properties of Materials II – Fracture Mechanics, Fatique, Creep, Relaxation
4. Introduction to Thermodynamics,
5. Introduction to Kinetics and Diffusion
6. Phase Diagrams of simple binary systems
7. Phase diagrams of systems with intermediary phases, polymorphic components and metastable equilibria
8. Solidification and Crystallization
9. Phase Transformations in Solid State, Heat treatment of iron based materials
10. Carbon steels, stainless and heat resistant steels
11. Tool steels and cast irons, graphite cast irons
12. Non-ferrous metals and alloys
13. Composite materials and Ceramics
14. Materials selection

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Introductory exercises. Organizational matters, work safety training.
2. Microscopy
3. Crystallography
4. Basic binary equilibrium diagrams I.
5. Basic binary equilibrium diagrams II.
6. Structure and properties of iron alloys.
7. Austenitization, diagrams IRA, ARA.
8. Basic types of heat treatment
9. Tensile test.
10. Low carbon steels.
11. Bending impact test.
12. Non-ferrous metals
13. Composites, Ceramics