Publication detail

Positive periodic solutions to super-linear second-order ODEs

ŠREMR, J.

English title

Positive periodic solutions to super-linear second-order ODEs

Type

journal article in Web of Science

Language

en

Original abstract

We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u<^>{\prime \prime }} = p(t)u + q(t,u)u + f(t);\,\,\,\,\,u(0) = u(\omega ),\,\,\,{u<^>\prime }(0) = {u<^>\prime }(\omega )$$\end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

English abstract

We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u<^>{\prime \prime }} = p(t)u + q(t,u)u + f(t);\,\,\,\,\,u(0) = u(\omega ),\,\,\,{u<^>\prime }(0) = {u<^>\prime }(\omega )$$\end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

Keywords in English

second-order differential equation; super-linearity; positive solution; existence; uniqueness

Released

01.03.2025

Publisher

SPRINGER HEIDELBERG

Location

HEIDELBERG

ISSN

0011-4642

Volume

75

Number

1

Pages from–to

257–275

Pages count

19

BIBTEX


@article{BUT197721,
  author="Jiří {Šremr},
  title="Positive periodic solutions to super-linear second-order ODEs",
  year="2025",
  volume="75",
  number="1",
  month="March",
  pages="257--275",
  publisher="SPRINGER HEIDELBERG",
  address="HEIDELBERG",
  issn="0011-4642"
}