Publication detail
Riccati inequality and other results for discrete symplectic systems.
HILSCHER, R. RŮŽIČKOVÁ, V.
Czech title
Riccatiho nerovnost a další výsledky pro diskrétní symplektické systémy
English title
Riccati inequality and other results for discrete symplectic systems.
Type
journal article in Web of Science
Language
en
Original abstract
In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are new even for the special case of discrete Hamiltonian systems.
Czech abstract
V tomto článku uvádíme několik nových výsledků týkajících se pozitivity a nezápornosti diskrétních kvadratických funkcionálů F přidružených k diskrétním symplektickým systémům. Zejména odvodíme (i) Riccatiho nerovnost pro pozitivitu F se separovanými konci, (ii) charakterizaci nezápornosti F s obecnými konci a (iii) několik nerovností pro perturbované funkcionály a nezápornost F s nulovými konci. Některé tyto výsledky jsou nové i pro speciální případ diskrétních Hamiltonovských systémů.
English abstract
In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are new even for the special case of discrete Hamiltonian systems.
Keywords in English
Discrete symplectic system; Quadratic functional; Nonnegativity; Positivity; Riccati inequality; Riccati equation; Conjoined basis; Sturmian theorem
Released
31.08.2006
ISSN
0022-247X
Journal
Journal of Mathematical Analysis and Application
Volume
322
Number
2
Pages from–to
1083–1098
Pages count
15
BIBTEX
@article{BUT43690,
author="Roman Šimon {Hilscher} and Viera {Štoudková Růžičková},
title="Riccati inequality and other results for discrete symplectic systems.",
journal="Journal of Mathematical Analysis and Application",
year="2006",
volume="322",
number="2",
month="August",
pages="1083--1098",
issn="0022-247X"
}