Detail předmětu
Inteligentní výrobní systémy
FSI-GIS-K Ak. rok: 2016/2017 Letní semestr
Pokrok ve výrobní a počítačové technice přináší nové aspekty v oblastech návrhů výrobků, výrobních procesů a výrobních systémů. Tradiční nástroje pro navrhování a řízení nadále nedostačují tomuto vývoji, proto se zde studenti seznamují s novými přístupy a metodami:
Výrobní systém jako inteligentní systém, základy umělé inteligence, expertní systémy, neuronové sítě, metody pro návrh a konstrukci výrobku, technologické přípravy výroby, skupinové technologie, rozvrhování výroby, lineární programování.
Jazyk výuky
čeština
Počet kreditů
4
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Studenti získají znalosti vybraných metod pro vytváření matematických
modelů jednotlivých činností ve výrobních systémech a základních metod
jejich řešení. Důraz je kladen na získání znalostí a dovedností
potřebných při algoritmizaci probíraných metod. Dále získají studenti
základní znalosti v oblasti aplikace metod umělé inteligence do výrobních
systémů, zejména pak expertních systémů a neuronových sítí.
Prerekvizity
– základní znalosti matematických postupů při řešení soustav lineárních algebraických rovnic a nerovností
- znalosti základních subsystémů výrobního systému, jejich funkcí a procesů v nich probíhajících
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Dle možností budou pro studenty organizovány přednášky odborníků z praxe a exkurze do firem zabývajících se činnostmi souvisejícími s obsahem předmětu.
Způsob a kritéria hodnocení
Podmínky udělení zápočtu:
účast ve cvičeních
Zkouška:
zkouška ověřuje získané znalosti. Zkouška má písemnou část, kde
se ověřuje schopnost studenta aplikovat získané znalosti a metody na
příkladech a ústní část, kde se ověřuje znalost teoretických základů.
Pokud student v písemné části vyřeší méně než polovinu zadaných příkladů u zkoušky neuspěl.
Učební cíle
Cílem předmětu je seznámit studenty s moderními metodami a nástroji pro
návrh výrobních systémů a jejich řízení v prostředí automatizované
výroby. Hlavní důraz je kladen na nástroje a metody založené na aplikaci
znalostních systémů a optimalizačních přístupů k řešení problémů v
oblasti návrhu a řízení. Jsou zde probrány i základní přístupy
související s umělou inteligencí.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičeních je kontrolována, při neúčasti omluvené ze závažných důvodů je možnost náhrady samostatným řešením zadaných úloh ze zameškané látky.
Použití předmětu ve studijních plánech
Program M2I-K: Strojní inženýrství, magisterský navazující
obor M-VSR: Výrobní stroje, systémy a roboty, povinně volitelný
Typ (způsob) výuky
Konzultace
13 hod., nepovinná
Osnova
1. Výrobní systém jako inteligentní systém (IVS) – moderní přístupy k výrobním postupům
2. Základy metod umělé inteligence, základní přístupy, rozdíl proti algoritmickým přístupům k řešení úloh
3. Systémy založené na znalostní bázi – způsoby reprezentace znalosti, základní metody využívané ve vyhodnovacích modulech
4. Expertní systémy, jejich využití v oblasti výrobních systémů, jejich struktura, plnění znalostní báze, vyhodnocování znalostí
5. Neuronové sítě, jejich základní principy a aplikace do oblasti výrobních systémů
6. Dekompozice výrobků a součástí na elementy – geometrické, konstrukční a výrobní. Způsoby jejich využití v modelování výrobků
7. Subsystém návrhu a konstrukce výrobků jako součást IVS
8. Subsystém technologické přípravy výroby jako součást IVS, variantní a generický způsob vytváření technologických postupů
9. Metody plánování a rozvrhování výroby v IVS
10. Metody skupinové technologie a s tím související uspořádání výrobního zařízení v IVS, clustrovací metody pro třídění součástí, kódovací systémy obrobků
11. Metody pro výběr výrobních zařízení a jejich uspořádání v jedné a více řadách
12. Metody analýzy skladovacích procesů v IVS
13. Získávání dat a jejich zpracování