Detail publikace
Applications of iterated logarithm functions on time scales to Riemann-Weber type equations
ŘEHÁK, P. YAMAOKA, N. ITO, B.
Anglický název
Applications of iterated logarithm functions on time scales to Riemann-Weber type equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
The aim of this paper is to give general solutions of second-order linear dynamic equations on time scales, which are related to Riemann-Weber type differential equations. The general solutions naturally include iterated logarithm functions on time scales. Using their properties, we obtain complete information on oscillation for the equations, which are important for comparison purposes.
Anglický abstrakt
The aim of this paper is to give general solutions of second-order linear dynamic equations on time scales, which are related to Riemann-Weber type differential equations. The general solutions naturally include iterated logarithm functions on time scales. Using their properties, we obtain complete information on oscillation for the equations, which are important for comparison purposes.
Klíčová slova anglicky
Time scales calculus; iterated logarithm functions; Euler type equations; Riemann-Weber type equations; oscillation; oscillation constant.
Vydáno
13.01.2020
ISSN
0002-9939
Ročník
148
Číslo
4
Strany od–do
1611–1624
Počet stran
14
BIBTEX
@article{BUT162018,
author="Pavel {Řehák} and Naoto {Yamaoka} and Baku {Ito},
title="Applications of iterated logarithm functions on time scales to Riemann-Weber type equations",
year="2020",
volume="148",
number="4",
month="January",
pages="1611--1624",
issn="0002-9939"
}