Detail publikace

Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage

Li, W. Klemeš, J.J. Wang, Q. Zeng, M.

Anglický název

Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

Salt-hydrate based thermochemical energy storage is currently a momentous technique utilized for longterm energy storage due to the reversible gas-solid reaction under low-temperature. Among available salt candidates, LiOH center dot H2O is a promising thermochemical material owing to its high heat storage density of 1400 kJ/kg and low charging temperature. The expanded graphite (EG) is selected as a host matrix owing to its excellent thermal conductivity and abundant microstructure, which can promote the heat and mass transfer. This work focuses on the thermochemical performances of the form-stable LiOH$H2O/ EG composite sorbents. Five samples were being synthesized with EG contents of 0, 5, 8, 12 and 15 wt%. These porous sorbents are characterized to understand the microstructure and thermophysical properties. Considering the comprehensive effect of thermal conductivity and storage density, as well as the adsorption kinetics, the 8 wt% EG-doped sample is the most favourable sorbent, which possesses the thermal conductivity of 6.92 W/(m K) and energy density of 1120 kJ/kg. The cyclability results also reveal the energy capacity of this composite maintains similar to 90% of the original after ten consecutive heat charging (dehydration) and discharging (hydration), suggesting good stability. Additionally, the active energy of 2.58 x 10(9) s(-1) and pre-exponential factor of 59.5 kJ/mol for the sorbent is derived. Finally, the thermal power of 123 Wand thermal efficiency of 83.6% are achieved for the storage unit in simulation. All these results further confirmed the feasibility of the developed composite sorbent in low-grade heat storage. (C) 2020 Elsevier Ltd. All rights reserved.

Anglický abstrakt

Salt-hydrate based thermochemical energy storage is currently a momentous technique utilized for longterm energy storage due to the reversible gas-solid reaction under low-temperature. Among available salt candidates, LiOH center dot H2O is a promising thermochemical material owing to its high heat storage density of 1400 kJ/kg and low charging temperature. The expanded graphite (EG) is selected as a host matrix owing to its excellent thermal conductivity and abundant microstructure, which can promote the heat and mass transfer. This work focuses on the thermochemical performances of the form-stable LiOH$H2O/ EG composite sorbents. Five samples were being synthesized with EG contents of 0, 5, 8, 12 and 15 wt%. These porous sorbents are characterized to understand the microstructure and thermophysical properties. Considering the comprehensive effect of thermal conductivity and storage density, as well as the adsorption kinetics, the 8 wt% EG-doped sample is the most favourable sorbent, which possesses the thermal conductivity of 6.92 W/(m K) and energy density of 1120 kJ/kg. The cyclability results also reveal the energy capacity of this composite maintains similar to 90% of the original after ten consecutive heat charging (dehydration) and discharging (hydration), suggesting good stability. Additionally, the active energy of 2.58 x 10(9) s(-1) and pre-exponential factor of 59.5 kJ/mol for the sorbent is derived. Finally, the thermal power of 123 Wand thermal efficiency of 83.6% are achieved for the storage unit in simulation. All these results further confirmed the feasibility of the developed composite sorbent in low-grade heat storage. (C) 2020 Elsevier Ltd. All rights reserved.

Klíčová slova anglicky

Thermochemical energy storage; Composite thermochemical material; LiOH·H2O; Adsorption kinetics; Cycle stability; Numerical simulation

Vydáno

01.09.2020

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTD

ISSN

0960-1481

Číslo

157

Strany od–do

920–940

Počet stran

21

BIBTEX


@article{BUT168064,
  author="Blanka {Balabánová} and Jiří {Klemeš},
  title="Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage",
  year="2020",
  number="157",
  month="September",
  pages="920--940",
  publisher="PERGAMON-ELSEVIER SCIENCE LTD",
  issn="0960-1481"
}