Detail publikace
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling
Ahmad, M.S. Klemeš, J.J. Alhumade, H. Elkamel, A. Mahmood, A. Shen, B. Ibrahim, M. Mukhtar, A. Saqib, S. Asif, S. Bokhari, A.
Anglický název
Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
The present study aims to evaluate the feasibility of Maple Leaf Waste (MLW) for the first time to produce biofuel-bioenergy and chemicals. It is meaningful to understand the thermochemical conversion and degradation pattern of the MLW to evaluate its biofuel-bioenergy potential. Different degradation stages and zones based on temperature and mass loss were identified to understand the pyrolytic behaviour in depth. Four different heating rates were used to conduct kinetic and thermodynamic analysis. The pyrolysis temperature was concluded ranged from 200 °C to 430 °C at all heating rates to obtain maximum bioenergy products. The kinetic parameters of pyrolysis were obtained by analysing through iso-conversional models of Kissinger-Akahira-Sunose (KAS), Friedman and Flynn–Wall–Ozawa (FWO). The average values of activation energies (75–91 kJ mol−1), high heating values (16.32 MJ kg−1), Gibb's free energies (261–269 kJ mol−1) and change in enthalpy (68–85 kJ mol−1) have shown the significant potential for bioenergy production and suitability of co-pyrolysis with other waste and biomass feedstock. © 2021 Elsevier Ltd
Anglický abstrakt
The present study aims to evaluate the feasibility of Maple Leaf Waste (MLW) for the first time to produce biofuel-bioenergy and chemicals. It is meaningful to understand the thermochemical conversion and degradation pattern of the MLW to evaluate its biofuel-bioenergy potential. Different degradation stages and zones based on temperature and mass loss were identified to understand the pyrolytic behaviour in depth. Four different heating rates were used to conduct kinetic and thermodynamic analysis. The pyrolysis temperature was concluded ranged from 200 °C to 430 °C at all heating rates to obtain maximum bioenergy products. The kinetic parameters of pyrolysis were obtained by analysing through iso-conversional models of Kissinger-Akahira-Sunose (KAS), Friedman and Flynn–Wall–Ozawa (FWO). The average values of activation energies (75–91 kJ mol−1), high heating values (16.32 MJ kg−1), Gibb's free energies (261–269 kJ mol−1) and change in enthalpy (68–85 kJ mol−1) have shown the significant potential for bioenergy production and suitability of co-pyrolysis with other waste and biomass feedstock. © 2021 Elsevier Ltd
Klíčová slova anglicky
Bioenergy; Biomass; Kinetic parameters; Pyrolysis; TGA
Vydáno
01.06.2021
Nakladatel
Elsevier Ltd
ISSN
0016-2361
Číslo
293
Strany od–do
120349–120349
Počet stran
8
BIBTEX
@article{BUT170498,
author="Jiří {Klemeš} and Syed Awais Ali Shah {Bokhari},
title="Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling",
year="2021",
number="293",
month="June",
pages="120349--120349",
publisher="Elsevier Ltd",
issn="0016-2361"
}